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The effect of external random forces on the static and dynamic behavior of the 
Lorenz model is investigated. Results of a numerical calculation in the conduc- 
tive, convective, and turbulent regimes are reported. The properties of static and 
time-dependent correlation functions of the three degrees of freedom of the 
model are analyzed for varying strength of the external noise level and com- 
pared with the behavior of the unforced system. 

KEY WORDS: Turbulence; Lorenz model; random behavior of nonlinear 
differential equations; response to external random forces; dynamic corre- 
lation and response functions. 

1. INTRODUCTION 

In the last few years an increasing number of physicists have directed their 
research activities toward investigating the complex behavior of nonlinear 
model systems described by seemingly simple deterministic differential or 
difference equations. The best-known examples of such models-- 
undergoing a transition to chaotic states upon variation of a parameter-- 
are presumably the Lorenz model (1) of the Rayleigh Brnard problem and 
models of seasonally breeding insect populations without generation over- 
lap. (2) However, there is a wealth of similar systems of nonlinear differen- 
tial equations 3 and difference equations (7'8) whose chaotic state is charac- 
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terized by apparently random-looking motion on attractors of complicated 
structure. (9) 

The trajectories in the phase space of these systems and the bifurcation 
sequence leading to the erratic motion have been studied intensively in 
computer calculations. (3-5'7'm-13) Liapunov characteristic exponents (~1-15) 
and Poincar6 maps, symbolic transition dynamics, and other mathematical 
machinery (s'16-18) have been used. Possible universal properties of the 
bifurcation sequences have been studied using scaling approaches. (13'19~ 

The somewhat intriguing possibility of doing statistical mechanics for 
these systems beyond the calculations performed by McLaughlin (2~ was 
pointed out in the fundamental paper of Ref. 3. That prompted one of us to 
make an analytical and numerical investigation (2~) of the statistical dynam- 
ics of the Lorenz model in the turbulent regime. This approach has since 
been continued (22) and complemented with other techniques. (23) Aizawa 
and Shimada (24) performed a numerical calculation in order to elucidate 
the ergodicity of motion on the Lorenz attractor. Unfortunately, the precise 
numerical procedure leading to their results were not given. Nakamura (5~ 
made a numerical analysis of transition probabilities to describe the spread- 
ing of trajectories over the phase space of the Lorenz system and of a 
40-dimensional model which simulates the Gunn instability. Statistical 
aspects of the chaotic behavior of one-dimensional nonlinear difference 
equations have also been studied recently. (zS) It is an interesting question 
how these stochastic systems respond to external random forces. A detailed 
answer in the case of a numerically simple system like the Lorenz model 
might shed some light on the old problem of statistical turbulence theory: 
What is the precise relation between external (random) forces necessary to 
sustain (statistically stationary) turbulence and the statistics of the turbulent 
flow? Limit cycle systems which show a transition to random behavior 
under external periodic forcing have been studied quite intensively. ~26~ 
Also, transition mechanisms which are induced by "external noise have been 
explored lately. (27) On the other hand, there are only few investigations of 
systems which like the Lorenz model, display transitions to chaotic states 
also in the absence of external forces: Nakamura ~5~ applied small random 
forces with a uniform distribution over a finite interval to the Lorenz 
system and his 40-mode model. He compared the projection of trajectories 
onto a two-dimensional surface with and without external noise and found 
evidence for a threshold behavior--in the presence of large enough forces. 
trajectories escaped an attractor, wandering to another one. McLaughlin (2~ 
studied possible modifications of the point attractors and of the strange 
attractor of the Lorenz model caused by exteimal noise coupled to one 
mode. He also worked out the direct-interaction-approximation (2s) for this 
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system and compared its results with computer calculations done for the 
correlation functions of two of the three Lorenz model modes. 

In this paper we discuss the results of a numerical investigation of the 
effect of external noise on the behavior of the Lorenz model in the 
conduction, convection, and turbulent regime. 4 We calculated static as well 
as dynamical correlations between the three degrees of freedom of the 
model and compared with the behavior of the unforced system.(! '3'20 In 
Section 2 we display the model equations and some numerical details 
related to the calculation of trajectories and averages in the presence of 
random forces. In Section 3 we present and discuss our results obtained in 
the three regimes cited above. The last section gives a summary. 

. THE MODEL 

The subject of our investigation is the Lorenz model (l) with random 
forces, defined by the equations of motion 5 

x = o y +  fx 

y = ( R  - 1 ) x  - ( o  + 1 ) y  - x z  + 

z =  - b z  + xy  + xZ + fz 

(2.1a) 

(2.1b) 

(2.1c) 

x, y,  and z are dimensionless variables and f ( t )  (i  = x,  y , z )  a white noise 
source, chosen according to a probabilit, distribution P {f}. For the main 
part  of the paper we will use Gaussian distributed forces with zero mean, 
characterized by their second moment  

(f (t)fAc)) = 8 Ds(t- c) (2.2) 
Uniformly distributed forces will be discussed briefly later on. The parame- 
ters o =  10 and b = 8 /3  are held fixed at their standard values. (1'29) 
Depending on the Rayleigh number  R, the solutions of (2.1) without 
random forces show qualitatively different behavior. In the conduction 
range R < 1 the trivial steady-state solution x = y = z = 0 is stable, while 
in the convection regime R > 1 two other steady-state solutions 

+_x o = + [ b ( R  - 1)] 1/2 , Y0 = 0, z 0 = R - 1 (2.3) 

become stable and remain so up to R = R r = o ( o  + b + 3 ) / ( o -  b -  1) 
= 24.74. However, there are "preturbulent" states (18) below R r due to 

4 For a physical interpretation of the Lorenz model variables and their relation to the original 
B~nard system see, e.g., Ref. 3. 

5 We have substituted for the variable y of the original Lorenz equations y - x to arrive at 
(2.1). 
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chaotic orbits. For R > R r no stable steady-state solution exists. The 
trajectories are nonperiodic and irregular for a certain range of R values 
above Rr, while for still larger R periodic motions are found to ex- 
ist (12'13'15'22) for special ranges of R. 

Our main interests are the statistical properties of (2.1) as displayed in 
correlation functions in the presence of random forces, whose strength D is 
allowed to vary. The basic quantity is the matrix of correlation functions 

C~( t) = ( Ai( t)Aj(O) > (2.4) 

which depend only on time differences because of the time translational 
invariance of (2.2). Here Ai(t ) is the fluctuation of one of the dynamical 
variables x , y , z  and ( . . .  > denotes an average over random forces. 
Assuming that the system is ergodic, we replace all averages of functions F 
of ,the variables x, y, z over random forces by time averages. 6 

In the convection regime 1 < R < R r a trajectory of the unforced 
Lorenz model gets attracted toward (x0, yo,Zo) or toward ( - x 0 ,  Y0, z0), 
depending on whether the starting point was in the basin of attraction 
x < 0 of the first attractor or in the basin of attraction x > 0 of the second 
one. Also, for some large R values the unforced Lorenz model has sym- 
metry-broken solutions. Pairs of asymmetric periodic attractors have been 
reported (~2'~5'22) which map into each other under the symmetry transfor- 
mation (x, y , z ) ~ ( - x , - y , z )  and different symmetry-violating limit cy- 
cles were shown (15'22) to attract different sets of initial points. The corre- 
spondence between initial condition and final state attractor in the two 
described cases is, of course, not surprising, given that we are dealing with 
first-order differential equations. It seems, however, worth mentioning that 
some of the relations (21) between equal-time averages following from the 
symmetry of the unforced Lorenz equations have been found (22) to be 
weakly violated in the turbulent regime. This implies that equal-time 
correlations show, even in the chaotic range, some memory of the initial 
conditions over those times covered by the computer calculationsJ 22) 

In the forced system (2.1), however, we did not find numerical evi- 
dence for a violation of the symmetry (x, y , z ,  f~,fy, ) ~ ) ~ ( - x , - y , z , -  
fx, - f y ,  fz). The time average of x in the convection range 1 < R < R r was 
zero and there was no indication of symmetry violations in other equal-time 
correlations either. Some calculations done with different starting points 
support the conclusion that time averages are independent of trajectories in 
the presence of Gaussian random forces. The latter seem to destroy any 
memory of the starting point. However, we did not investigate that problem 
systematically. 

6 For a discussion of the reliability of time averages in numerical studies of stochastic behavior 
see Ref. 30. 
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The forward difference method was used to integrate the system of 
differential equations (2.1). The time step was At = 10 -3 and a total 
averaging time of T =  1700 ensured numerical convergence of time 
averages. The random force f(t)  was approximatel~cAtaken to be a random 
constant f / A t  for t i < t < ti + At, so that D = ( f ~ ) / A t .  We thus gener- 
ated for the three forces in (2.1) some 10 6 random numbers with two 
random number generators coupled together in such a way as to destroy 
possible machine-inherent correlations. To test the reliability of our proce- 
dures we calculated numerically correlations of the linearized forced equa- 
tions (2.1) and compared the results with the analytic expressions given 
later. The agreement was very good, mostly within pencil's width. 

3. NUMERICAL RESULTS 

3.1. Conduction Regime: R < 1 

In Fig. 1 we show some of the results of the numerical integration of 
Eqs. (2.1) for R = 1/2 and a Gaussian forcing spectrum with D = 1/4, l, 
and 4. The experimental curves are compared to the solution of (2.1) 
linearized around the steady state x = y  = z = 0 of the unforced system. 
Neglecting nonlinear terms, (2.1) can easily be solved for the correlation 
functions. For example, 

( 0 2 + ( 0 +  1) 2 +  02 
C~ = D (3.1) 

I t 0 2 - - o ( R  - 1 ) ] 2 + ( 0 2 ( 0 +  1) 2 

has two pairs of complex conjugate poles, where Fourier transforms have 

Fig. 1. Normalized correlation function (x(t)x) 
/ ( x  2) in the conductive regime for D = 1/4 and 
4, compared to the solution of the linearized 
equations ( .  - �9 ). 
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been introduced according to 

oo i~ot Cij(o~ ) = f_  dt e Cij(t ) (3.2) 

The corresponding time-dependent correlation function cOx (t) is the sum of 
two exponentials with inverse relaxation times which are independent of the 
strength D of the fluctuating force. D enters the linearized correlation 
functions only via an overall factor, so that the normalized quantity 
C~ ) = C~176 (t = 0) is independent of D. 

This function is shown in Fig. 1 by dots. Clearly the actual relaxation 
times of the nonlinear system (2.1) do depend on the strength of the 
fluctuating force. The autocorrelation of x gets damped out faster with 
increasing noise level D. The correlation functions Cyy(t) and Czz(t ) show 
roughly the same behavior. For all values of D considered here the 
diagonal elements of the correlation matrix (2.4) are monotonically decreas- 
ing functions of time. The relaxation times show the overall tendency to 
decrease with increasing forcing strength, the effect being most pronounced 
for Cxx(t). 

The numerical results for equal-time correlation functions show that 
fluctuations increase with increasing noise level D. Whereas the linearized 
theory predicts the expectation value of (z)  to be strictly zero, the full 
equations (2.1) lead to a finite (z),  increasing with increasing D. Further- 
more, the linear theory overestimates the fluctuations in x and underesti- 
mates those in z, the discrepancies being largest for large D. We conclude 
that the linear theory is inadequate for random forces with strength D 
sufficiently large to frequently kick trajectories out into phase space regions 
far away from the former steady-state point at the origin. Then the 
nonlinear terms in (2.1) become important, producing erratic motion as in 
the turbulent regime R > R r of the unforced system. Its phase mixing 
properties lead to decorrelation beyond that caused by external noise. The 
above argumentation is supported also by inspecting the typical behavior of 
trajectories in the presence of random forces. For most of the time it 
resembles Brownian motion in the phase space restricted to the surrounding 
of the origin. When kicked out far enough, however, trajectories spiral 
around in much the same way as they do in the unforced system beyond R r 
before returning close to the origin. But even for the smallest forcing we 
found the average (x  2) of one of the nonlinear terms entering (2.1c) to be 
larger in size than the average linear term b(z) .  

3.2. Convective Reglme: 1 < R < R r 

In the absence of random forces, the system is attracted in general (~8~ 
to one of the stable steady states (___ x 0, Y0, z0) depending on its initial state. 
If random forces are applied, the trajectories are no longer confined to one 
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of the steady-state points. In particular, motion from one point to the other 
becomes possible. 

We performed three numerical calculations at R = 10 for a Gaussian 
forcing spectrum with D = 4, 16, and 64. In all cases we found ( x ) =  0. 
This result shows that crossings from one basin of attraction to the other do 
occur for Gaussian-distributed random forces. Simple equal-time correla- 
tions were found to be comparable in magnitude to the corresponding 
steady-state values and not to depend significantly on D, except for (y2) ,  
which vanishes for D = 0. 

The time-dependent correlation function (;xx(t) is, for all values of D 
shown in Fig. 2a, an almost monotonic function of time. However, the 
decay time of correlations increases drastically for decreasing D. In the 
limit D ~ 0 it takes longer and longer for a point in phase space to escape 
from one of the basins of attraction to move to the other one. As a 
consequence correlations, i.e., memory of the initial state, persist over an 
extended time scale. This phenomenon is analogous to critical slowing 
down in a second-order phase transition, if we interpret the state D = 0 
with the two stable solutions x = _+ x 0 as a state of broken symmetry. 
Indeed, the system (2.1) can be rewritten (12'31) into an integrodifferential 
equation for x(t) alone, which describes the motion of a particle in a 
double-well potential in the presence of friction, and a force (31) depending 
on time and the history of x(t). For 1 < R < R r the above force is too 
small to overcome the central barrier of the well and the particle gets 
trapped in one of the minima at +_ x o unless there are external (random) 
forces strong enough to kick i t  into the other well. The slow decay of 
correlations in Cxx(t) obliterates the accuracy of time averages (2.5) evalu- 
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ated with finite T. Our data for R = 10 and D = 4 are therefore less reliable 
than the other results presented in this paper. 

Figure 2b shows, as an example which is also representative for Cyy, 
the normalized correlations C~z(t ) for D --- 4 and 64. They display damped 
oscillations with roughly the period of the linearized theory discussed 
below. The damping, however, increases drastically with growing noise 
level D. Also shown are the correlations following straightforwardly from 
the linearized version of Eqs. (2.1) around one of the point attractors 
(---x0, Y0, Zo)- Within the above linear theory the normalized correlation 
functions Cii(t)= Cii(t)//Cii(O) are again independent of D. Their time 
dependence is determined by three poles in the complex frequency plane. (3) 
One is purely imaginary, the other two have finite real parts of opposite 
sign, reflecting spiraling motion around one of the attractors (+_ x o, Yo, Zo). 
This gives rise to the oscillatory behavior of Cyy(t) and ~z( t )  in Fig. 2b. 
These two correlation functions show a qualitative agreement between the 
D-independent linearized theory and "experiments" only for small D. In 
that limit the agreement is best for short times. 

However, the linear theory for C;xx(t) is qualitatively wrong. Depend- 
ing only on x02, it does not properly reflect the fact that there are really two 
different attractors at x = ___ x 0 between which the orbit can move back and 
forth in the presence-of random forces. If the noise level is high, the 
trajectory frequently commutes between the two basins x ~ 0 of attraction 
of the linearized theory. That is the only mechanism to effectively destroy 
the memory of the basin, x < 0 or x > 0, in which the trajectory started. 
According to Fig. 2a, a high noise level seems to be realized for D = 16. On 
the other hand, if D is sufficiently small, large enough forces to kick the 
orbit into the other basin are rare. The trajectory therefore stays a long time 
in the same basin of attraction close to the attractor (small forcing!) where 
the motion is dominated by the characteristic frequencies of the system 
linearized around (+_ x0, Y0, z0). Hence one expects oscillatory behavior for 
Cxx (t) superimposed upon the slow decay of correlations caused by the rare 
crossings. Such a situation seems to prevail for D --- 4 in Fig. 2a. 

3.3. Turbulent Regime: R > R r 

The Lorenz model without random forces shows a transition to chaotic 
behavior at R = Rr (l). Above the threshold value R T trajectories are non- 
periodic and irregular, while for still larger values of R, periodicity strips 
were found to exist. (12'13'15'22) The nonp.eriodic solutions belong to a strange 
attractor type of solution; their statistical properties have been discussed by 
one of us. (21) To compare with these results we performed a numerical 
calculation for R = 30 and chose D to be small compared with the average 
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Fig. 3. Normalized correlation function (6z(t) 
6z)/(6z 2) in the turbulent  regime for various 
noise levels D. 
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velocity squares (~/2) of the unforced system. Our results for D = 25 and 
100 are presented in Figs. 3 and 4. 

In Table I we list some of the experimental results for equal-time 
correlations. All fluctuations are increased in the presence of random 
forces. The changes in (z )  and in the fluctuations ((Sz) 2) and (x2), 
however, are rather small, while the fluctuations of y are enhanced consid- 
erably in the presence of random forces. Another effect of the forcing is 
that the correlation (xy) which vanishes (21) for D = 0 is finite in the 
presence of external noise and equals - (Xfx) /O.  Moreover, (x(t)y) shows 
no definite symmetry under time inversion. 

For D = 0 and R = 30 the motion is nonperiodic, and the trajectories 
spiral back and forth around the former attractors (+_ Xo, YoZo). Also, when 
externally forced, the system's averaged quantities ( z )  and (x  2) stay close 
to z 0 and x02, respectively, as shown in Table I. 
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Table I. 

Zippelius and Lucke 

Equal-Time Correlations in the Turbulent Regime for Various Noise 
Levels D 

R = 3 0  D = 0  D = 2 5  D =  100 

( z )  25.6 27.8 28.2 z 0 = 29 
(x  2) 68.1 79.2 81.1 x02 = 77.33 

(y2)  21.1 31.6 36.6 y02 = 0 

(z 2) 734 854 880 z02 = 841 

((3z) 2) 78.6 81.2 84.8 - -  
((3z)2)l/2/(z) 0.35 0.32 0.33 - -  

In Fig. 3 we show the normalized time-dependent correlation function 
Cz~(t) = (3z(t)3z)/((3z)2).  For D = 0 this function displays exponentially 
damped oscillations with frequency (21) f~ = ((~2)/((3z)2))1/2. The total 
decay time is of the order of 10. For small times the fluctuating forces 
considered here have little effect, while for larger times they enhance the 
decay of correlations. The period of oscillation is only slightly shifted with 
respect to D --- 0, whereas the total decay time is considerably decreased-- 
being comparable to the period of oscillation for D = 100. 

The normalized time-dependent correlation function Cyy(t)= ~y(t) 
y ) / ( y 2 )  is plotted in Fig. 4. Independent of D, this function shows a sharp 
initial decay in a time of order 0.2. Then, within a time of order 1 the 
system completely loses its memory of the initial value y (0) while undergo- 
ing on the average a few oscillations around the origin. Since this decay is 
so fast already without external noise, the addition of random forces has 
less effect or~ dynamic correlations of y than o n  those of z, whose relaxation 
time is much larger for D = 0. This confirms our observation that the 
external noise applied here has little effect on the behavior of normalized 
correlation functions over times t << 1. 

For R = 30 we performed a calculation with a constant distribution of 
random numbers having the same second moment as the Gaussian distribu- 
tion: D = 100. With this choice, differences in correlation functions for a 
constant and a Gaussian distribution lie within the error bars. 

It is instructive to compare dynamical correlations in the two different 
regimes I < R < R  r and R > R  r. To do so we define a reduced time 
t = tR t/2. This choice is motivated by the observation that for D = 0 the 
characteristic frequency squares 7 f~ = (.4~)/(A2i) scale like R, (21-23) and 

7 The graph of the frequency f~o ~ ((j,2)/(yZ))l/Z in Fig. 6 of Ref. 21 is wrong. Instead of 

aoo = ({X2[Z 2 -- ( R  -- l ) 2 ] ) / / ( y  2) - 2 o ( R  - l )  - ( o  q- l )  2} 1/2 

[Eq. (38b)], the graph represents 

( (x2[z  2 -  ( R -  1 )2 ] ) / (y  2 ) -  2 ( R -  1 ) - ( o  + l) 2}' /2 

which has to be shifted downward to obtain f~o. One of us (ML) would like to thank B. 
Sonneborn-Schmick and S. Grossmann for pointing out this error. 
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that the oscillation period of correlations is only sightly shifted by a finite 
D. The total decay time, however, depends sensitively on the external noise 
level. For D = 16 and D = 100 the correlations Czz(t) and Cyy(t) displayed 
in Fig. 5 for our two representative Rayleigh numbers below and above R r 
are strikingly similar even without optimizing the time scale or the choice of 
parameters. This first of all means that the statistical dynamics of the y and 
z modes in the convective and the turbulent regimes is the same in the 
presence of certain noise levels if times are scaled appropriately. Since the 
correlations in y for R = 30 with and without external forcing do not differ 
considerably, we furthermore conclude from Fig. 5 the following: the 
statistical dynamics of the y degree of freedom in the unforced turbulent 
system is similar to the dynamics below R r when external forces drive the 
system. This conclusion is supported by an inspection of the trajectories 
which display erratic behavior for R < R r and D > 0: a frequently spiral- 
ing type of motion back and forth around the two attracting points is 
observed--a  feature characteristic of the trajectories in the unforced system 
above the turbulence threshold R r. Despite all these similarities, we are 
somewhat reluctant to call this phenomenon a noise-induced transition to 
turbulence. The possible equivalence of external and internal noise which 
one is tempted to deduce from Fig. 5 should be investigated further. 
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4. S U M M A R Y  

In this paper we have investigated the statistical properties of the 
Lorenz model for the Brnard problem driven by external random forces. 
Numerical calculations for three characteristic Rayleigh numbers and vary- 
ing forcing strength were performed to analyze static and dynamic correla- 
tions in different flow states, with special emphasis on their dependence on 
the external noise level. 

In the conductive regime R < 1, we compared our numerical results to 
the predictions of the linearized theory to estimate the importance of 
nonlinear terms as a function of external forcing strength D. We found that 
for increasing D the nonlinear terms grow in importance, producing erratic 
motion with phase mixing properties much as in the turbulent regime 
R > R r of the unforced system. This effect is observed "experimentally" as 
an increase in relaxation rates as compared to the linearized theory. 

In the convective regime 1 < R < R r, the time-dependent correlations 
display damped oscillations, whose period we associate with the spiraling 
motion of trajectories around one of the attractors of the unforced system. 
The total decay rate is determined by the frequency of motion from one 
attractor to the other one. The oscillations are superimposed on an overall 
monotonic decay of correlations with the initial value, which is mainly 
caused by crossings of the trajectory between the two basins of attraction 
x ~ 0. The crossing frequency increases with increasing noise level D, and 
with it the decay rate. 

Gaussian random forces restore the symmetry which is broken for 
D = 0 and 1 < R < R r. We found ( x ) =  0, reflecting the trajectory's 
commuting between phase space regions with positive and negative x. In 
the limit D ~ 0 the trajectory stays longer and longer near one attractor: 
We observe a "slowing down" effect in the dynamic correlations of x 
accompanying the transition to the state of broken symmetry for D = 0. 

In the turbulent regime, R > R r, our results show only small changes 
compared with the statistical behavior of the unforced system. The charac- 
teristic structure of the frequency spectrum of the autocorrelation functions 
is preserved in the presence of Gaussian forces with variance small com- 
pared to the average velocity squares. The external noise causes, however, 
an additional loss of memory, which is visible in the increased decay of 
correlations at larger times. A study for uniformly distributed external 
forces revealed the most gratifying fact that the dynamics of the system in 
the turbulent range is insensitive to the statistics of external forces. We 
finally discussed striking similarities in the statistical dynamics of the forced 
system in the convective regime and the unforced system in the turbulent 
regime. 
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